Videoanmerkung für intelligente KIs
Kennzeichnen und Vorbereiten von Trainingsdaten mit Videoannotation Services for Computer Vision
Entdecken Sie kommentierte Videodaten-Pipelines ohne Engpässe.
Ausgewählte Kunden
Warum werden Videoannotation Services für Computer Vision benötigt?
Haben Sie jemals darüber nachgedacht, wie KIs, ML-Setups und Maschinen, die auf Computer Vision basieren, videospezifische Entitäten proaktiv identifizieren und entsprechende Maßnahmen ergreifen können? Hier kommt die Videoannotation ins Spiel, die es intelligenten Systemen ermöglicht, Objekte, Muster und mehr anhand der ihnen zugeführten gekennzeichneten Daten zu erkennen und zu identifizieren.
Immer noch unsicher, warum Videoanmerkungen für Computer Vision sinnvoll sind! Nun, wenn Sie jemals darüber nachgedacht haben, ein selbstfahrendes Auto zu besitzen, ist es sinnvoll, die Feinheiten der Videoanmerkung zu kennen. Ob es darum geht, autonome Fahrzeuge zu trainieren, um Straßensperren, Fußgänger und Hindernisse zu erkennen und Posen und Aktivitäten zu bestimmen, Video-Labeling spielt eine Rolle beim Training fast jedes wahrnehmungsfähigen KI-Modells..
Wenn Sie immer noch verwirrt sind, wie die gesamte Prämisse funktioniert, ist hier ein selbsterklärendes Beispiel:
Stellen Sie sich vor, Sie trainieren die Wissensdatenbank eines selbstfahrenden Autos, bevor der Prototyp vorgestellt wird. Um mit Höchstleistung funktionieren zu können, sollte das autonome Fahrzeug in der Lage sein, Signale, Personen, Straßensperren, Barrikaden und andere zu durchfahrende Einheiten mit Genauigkeit und Präzision zu identifizieren. Dies kann jedoch nur ermöglicht werden, wenn Machine-Learning- und Computer-Vision-Modelle mithilfe der beschrifteten Datensätze lernen können, die schließlich zum Trainieren der Algorithmen verwendet werden.
Videolabeling – Human Touch für Ihre KI
Lange Rede, kurzer Sinn – Shaip ermöglicht Ihnen den Zugriff auf einige der fortschrittlichsten Lösungen für Videoanmerkungen, um einfühlsame und hochintelligente Modelle zu entwickeln. Als Unternehmen für Videoanmerkungen verleiht Shaip Ihren zielspezifischen Setups die effektivste Modelltrainings-Feuerkraft, die mit Data-Mining-Tools, internen Datenkennzeichnungsteams und der Möglichkeit, eine breite Palette von Videoannotations-Tools einzusetzen, weiter verstärkt wird jeden relevanten Anwendungsfall.
Wenn Sie Anforderungen an die Videokennzeichnung an Shaip auslagern, können Sie die folgenden Ressourcen in die Hände bekommen:
- Möglichkeit, längere Videos zu bearbeiten und Informationen zu extrahieren
- Automatisierte Anmerkungsperspektive für eine schnellere Markteinführung
- Zugriff auf Frame-by-Frame-Beschriftung
- Branchenspezifische Abdeckung
- Höhere Genauigkeit
- Fähigkeit, wahnsinnige Datenmengen zu verarbeiten
Unsere Expertise
Produktive Videobeschriftung leicht gemacht
Erfassen Sie jedes Objekt im Video Bild für Bild und kommentieren Sie es, um die sich bewegenden Objekte mit unseren fortschrittlichen Video-Beschriftungsdiensten für Maschinen erkennbar zu machen. Wir verfügen über die Technologie und die Erfahrung, um Videolabeling-Lösungen anzubieten, die Ihnen mit umfassend gekennzeichneten Datensätzen für alle Ihre Videolabeling-Anforderungen helfen. Wir helfen Ihnen, Ihre Computer Vision Modelle genau und mit der gewünschten Genauigkeit zu erstellen. Definieren Sie Ihren Anwendungsfall und lassen Sie Shaip die Arbeit mit Vision-Modellen übernehmen, mit den folgenden Tools, die uns zur Verfügung stehen:
Begrenzungsrahmen
Die wohl zuverlässigste Videobeschriftungstechnik, Bounding Box-Annotation, betrifft die Vorstellung von imaginären Rechtecken, um Objekte zu erkennen.
Polygon-Anmerkung
Für die Szenen- und Objektklassifizierung ist die Polygon-Annotation sehr praktisch, wenn unregelmäßig geformte Elemente im Spiel sind, da sie genauer ist als Begrenzungsrahmen.
Semantische Segmentierung
Wenn Sie gezieltere und genauere KIs für Computer Vision entwickeln möchten, sollten Sie die semantische Segmentierung in Betracht ziehen, bei der es um die Klassifizierung von Bildern auf Pixelebene geht.
Keypoint-Anmerkung
Biometrische Sicherheits-Setups wie die Gesichtserkennung können von Keypoint-Anmerkungen profitieren, die sich auf die Kennzeichnung von Benutzerausdrücken, spezifischen Gesichtsmarkierungen wie Lippen, Nase, Augen und sogar Anmerkungen auf zellulärer Ebene konzentrieren.
3D-Quader-Anmerkung
3D-Quader sind wahrscheinlich eine definiertere Version der Bounding Box-Annotation.
Linien- und Polylinienanmerkung
Diese Technik wird am besten für Branchen eingesetzt, die einen planareren Ansatz zur Kennzeichnung von Entitäten erfordern. Es wird zum Kommentieren von Pipelines, Straßen, Schienen und Datensätzen zu Straßenmarkierungen, Fahrspuren und mehr verwendet.
Rahmenklassifizierung
Für Datenworkflows zur YouTube-Videoannotation implementieren wir die Frame-Klassifizierung als bevorzugte Art der Annotation. Auf diese Weise können Sie Videos navigieren, mit der Möglichkeit, Frames zu überspringen und eine bessere Kontrolle zu bieten.
Video Transcription
Wenn Sie eine bessere Interaktion mit Ihren Videos wünschen, empfehlen wir die Videotranskription als ergänzende Form der Annotation, die sich am besten für die Übersetzung der Audio-Snippets des betreffenden Videos in Text eignet.
Skelettanmerkung
Wenn Sie vorhaben, Modelle für Sicherheitsanwendungen, Fitness- und Sportanalysen zu entwickeln, empfehlen und verwenden wir Skelettannotationen zur Identifizierung und Kennzeichnung von Datensätzen mit Schwerpunkt auf Körperausrichtung und -positionierung.
Anwendungsfälle für Videoanmerkungen
Shaip bietet effektive Videoannotationslösungen für eine Vielzahl von Anwendungen.
Fahrerüberwachung in der Kabine
Kommentierte Hunderte von Stunden Fahrer- und In-Car-Videomaterial. Jedes Video enthält gründlich kommentierte Clips mit Bewegungen von Gesichtszügen und Szenarien im Auto, um das Fahrerverhalten genau zu überwachen und Warnungen zu geben, wenn Abweichungen beobachtet werden.
Einzelhandels-KI
Videokommentare sind auch in Einzelhandelsgeschäften hilfreich, um das Verbraucherverhalten zu verstehen. Mit unseren kommentierten Videos ist es einfach, Anwendungen zu entwerfen, um Käuferbewegungen zu verfolgen, Kaufentscheidungen zu verstehen und Diebstahl zu identifizieren.
Verkehrsüberwachung
Videokommentare spielen eine wichtige Rolle bei der Entwicklung hochwertiger Überwachungsanwendungen. Wir haben Hunderte von Stunden an Überwachungs- und CCTV-Videos erfolgreich mit einer überlegenen Auflösung und Detailgenauigkeit kommentiert, indem wir erforderliche Objekte kommentiert haben.
Gesichtserkennung
Shaip ist in der Lage, Schlüsselpunkte auf dem Gesicht einer Person anzubringen, die bei der Entwicklung von High-End-Trainingsdatensätzen für die Entwicklung von Gesichtserkennungsanwendungen verwendet werden.
Spurerkennung
Erweiterte Funktionen in der Videoannotation ermöglichen es uns, stundenlange Videos zu sichten und die Polylinienannotation zu verwenden, um Fahrzeuge zu trainieren, Fahrspuren, Straßenmarkierungen, Fahrzeugverkehr, Umleitungen, Straßenspuren und Wegbeschreibungen zu erkennen.
Computer Vision & Robotik
Durch das Trainieren von scharfsinnigen Robotern in der Nutzung, Anpassung und Reaktion auf ihre Umgebung ohne die Notwendigkeit menschlicher Interaktion ist es möglich, Todesfälle und Unfälle zu reduzieren, was die Produktivität steigert.
Anmerkungen mit mehreren Labels
Bei bestimmten gekennzeichneten Kategorien müssen Sie sich auf Unterkategorien konzentrieren, um die Entscheidungsfindung zu verkürzen und die Analyse noch genauer zu gestalten. Die Instanzannotation als Teil der Multi-Label-Videoannotation hilft Ihnen dabei, indem sie Fahrzeuge weiter als Busse, Autos und mehr kategorisiert.
Videodatenanalyse
Falls Sie den Bedarf an Video-Labeling analysieren möchten, bevor Sie eine umfassende Trainingsstrategie planen, können Sie sich jederzeit auf unsere Videodatenanalyse verlassen, die Ihnen helfen soll, die Anwendungsfälle besser zu planen, hochspezifische Ziele zu planen und uns schließlich die Möglichkeit zu geben die richtige Annotationstechnik einsetzen.
Benutzerdefinierte Anmerkung
Sobald die Videodatenanalyse abgeschlossen ist, können wir Ihnen sogar bei der Planung benutzerdefinierter Annotationsstrategien helfen, die vom richtigen Videoannotation-Tool unterstützt werden, selbst wenn Ihr Anwendungsfall sehr schwer fassbar ist und weitere Details erfordert.
Gründe, Shaip als Ihr vertrauenswürdiges Unternehmen für Videoanmerkungen zu wählen
Personen
Engagierte und geschulte Teams:
- 30,000+ Mitarbeiter für Datenerstellung, Kennzeichnung und QA
- Zertifiziertes Projektmanagement-Team
- Erfahrenes Produktentwicklungsteam
- Talentpool-Sourcing- und Onboarding-Team
Prozess
Höchste Prozesseffizienz wird gewährleistet durch:
- Robuster 6-Sigma-Stage-Gate-Prozess
- Ein engagiertes Team von 6 Sigma Black Belts – Key Process Owners & Quality Compliance
- Kontinuierliche Verbesserung und Feedbackschleife
Plattform
Die patentierte Plattform bietet Vorteile:
- Webbasierte End-to-End-Plattform
- Einwandfreie Qualität
- Schnellere TAT
- Nahtlose Lieferung
Personen
Engagierte und geschulte Teams:
- 30,000+ Mitarbeiter für Datenerstellung, Kennzeichnung und QA
- Zertifiziertes Projektmanagement-Team
- Erfahrenes Produktentwicklungsteam
- Talentpool-Sourcing- und Onboarding-Team
Prozess
Höchste Prozesseffizienz wird gewährleistet durch:
- Robuster 6-Sigma-Stage-Gate-Prozess
- Ein engagiertes Team von 6 Sigma Black Belts – Key Process Owners & Quality Compliance
- Kontinuierliche Verbesserung und Feedbackschleife
Plattform
Die patentierte Plattform bietet Vorteile:
- Webbasierte End-to-End-Plattform
- Einwandfreie Qualität
- Schnellere TAT
- Nahtlose Lieferung
Industrien, die wir bedienen
Als einer der branchenführenden Lösungsanbieter unterstützen wir eine Vielzahl von Branchen bei der Konzeption und Entwicklung von Automatisierungstools und -modellen auf der Grundlage unserer Suite von Videoanmerkungsdiensten. Wir bringen die Leistungsfähigkeit der Technologie und die Kompetenz menschlicher Experten zusammen, um große Datenmengen zu analysieren, um die Produktion zu verbessern, Fehler zu reduzieren und die Effizienz zu steigern.
Automobilindustrie
Wir unterstützen die Automobilindustrie bei der Entwicklung und Bereitstellung zuverlässiger Tools für das autonome Fahren und die Fahrerüberwachung im Auto auf der Grundlage unserer hochwertigen KI-basierten Trainingsdatensätze.
Medizintechnik
Wir integrieren KI- und maschinelle Lernfähigkeiten, indem wir Videokommentare nutzen, um Medizin, Bildgebung, Verfahren und Prozesse innerhalb des medizinischen Systems zu rationalisieren.
Fertigung
Die Industrie nutzt die Leistungsfähigkeit der Videoannotation, um KI-basierte Tools für eine schnellere Produktion, zeitgebundene Entscheidungsfindung und Rationalisierung der Fertigung zu trainieren und zu entwickeln.
Überwachung
Videoannotation wird genutzt, um Objekte zu erkennen und Menschen, Autos, Bäume, Tiere und andere Objekte zu identifizieren, um verbesserte Sicherheits- und Überwachungswerkzeuge zu entwickeln.
Dienstleistungen angeboten
Die fachmännische Erfassung von Bilddaten ist für umfassende KI-Setups nicht nur praktisch. Bei Shaip können Sie sogar die folgenden Dienstleistungen in Betracht ziehen, um Modelle weit verbreiteter als üblich zu machen:
Textanmerkung
Dienstleistungen
Wir sind darauf spezialisiert, textuelles Datentraining vorzubereiten, indem wir umfassende Datensätze mit Annotation, Entitätsannotation, Textklassifizierung, Sentimentannotation und anderen relevanten Tools annotieren.
Audiokommentar
Dienstleistungen
Auf die Kennzeichnung von Audioquellen, Sprache und sprachspezifischen Datensätzen mit relevanten Tools wie Spracherkennung, Sprecherdiarisierung und Emotionserkennung sind wir spezialisiert.
Bildanmerkung
Dienstleistungen
Wir sind stolz darauf, segmentierte Bilddatensätze zu kennzeichnen, um Computer-Vision-Modelle zu trainieren. Einige der relevanten Techniken umfassen Grenzerkennung und Bildklassifizierung.
Empfohlene Ressourcen
Angebote
Erstklassige Videodatenerfassung zum Trainieren von KI-Modellen
Wir helfen Ihnen, jedes Objekt Bild für Bild in einem Video aufzunehmen, nehmen dann das Objekt in Bewegung, kennzeichnen es und machen es für Maschinen erkennbar. Das Sammeln hochwertiger Videodatensätze zum Trainieren Ihrer ML-Modelle war schon immer ein stringenter und zeitaufwändiger Prozess, die Vielfalt und die enormen Mengen, die erforderlich sind, tragen zu weiterer Komplexität bei.
Käufer-Führer
Einkaufsleitfaden für Videoanmerkungen und -kennzeichnung
Es ist ein ziemlich verbreitetes Sprichwort, das wir alle gehört haben. dass ein Bild mehr als tausend Worte sagen könnte, stellen Sie sich nur vor, was ein Video sagen könnte? Vielleicht eine Million Dinge. Keine der bahnbrechenden Anwendungen, die uns versprochen wurden, wie fahrerlose Autos oder intelligente Kassen im Einzelhandel, ist ohne Videoannotation möglich.
Lösungen
Dienstleistungen und Lösungen für Computer Vision
Computer Vision ist ein Bereich der Künstlichen Intelligenz, dert Maschinen trainieren, die visuelle Welt so zu sehen, zu verstehen und zu interpretieren, wie es Menschen tun. Es hilft bei der Entwicklung von Modellen für maschinelles Lernen, um Objekte in einem Bild oder Video genau zu verstehen, zu identifizieren und zu klassifizieren – in einem viel größeren Maßstab und einer viel größeren Geschwindigkeit.
Expertenunterstützung ist nur einen Klick entfernt. Planen Sie, die Vision-KI-Fähigkeiten auf die nächste Stufe zu heben! Wenden Sie sich sofort an uns, um professionelle Hilfe zu erhalten
Häufig gestellte Fragen (FAQ)
Videoannotation ist der Prozess, videospezifische Entitäten mit relevanten Metadaten zu kennzeichnen, um sie trainingsfähig und maschinenerkennbar zu machen.
Die Kennzeichnung von Fahrzeugen, Fußgängern, Straßenschildern und anderen Elementen für das Training selbstfahrender Autos, das Verfolgen und Kategorisieren von Posen und Gesichtsschlüsselpunkten für bestimmte Spiele und Apps und sogar das Markieren von benutzerdefinierten Objekten zur Beschleunigung der intelligenten Fertigung sind einige der Beispiele die Beispiele für Videoanmerkungen.
Derzeit wird empfohlen, YouTube-Videos mit Anmerkungen zu versehen, indem Sie auf ausgelagerte Anmerkungstools wie Videotranskription und Frameklassifizierung zurückgreifen. Im Gegensatz zum zuvor von YouTube angebotenen Anmerkungseditor wird erwartet, dass die ausgelagerten Strategien bei der Verbesserung der Benutzerbindung besser funktionieren.
Ja, Sie können ein YouTube-Video kommentieren, indem Sie sich hauptsächlich auf die Frame-Klassifizierung und die Videotranskription verlassen.
Vision-KIs und -Modelle erfordern LKW-Ladungen von Trainingsdaten, aus denen sie lernen können, wenn sie in der Lage sein sollen, in Zukunft unabhängige und proaktive Entscheidungen zu treffen. Daher benötigt Computer Vision richtig vorbereitete, markierte und gekennzeichnete Videokomponenten, die zusammen mit Algorithmen gefüttert werden, um die Modelle und schließlich die KIs wahrnehmbarer zu machen.
Maschinelles Lernen als Technologie stellt sicher, dass Maschinen ohne menschliches Eingreifen in der Lage sind, aus identifizierbaren Mustern und Daten zu lernen. Damit dies jedoch Realität werden kann, müssen dem System trainingsfertige Datensätze zugeführt werden, was am besten durch Videoannotation gehandhabt wird.